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1. Abstract 

Autonomous driving has been researched a lot in recent years and most of improvements have 
been achieved. However, autonomous parking has been a practical problem so far. So, this 
paper deals about a simulation program that visualizes the autonomous parking algorithm by 
using reinforcement learning (RL). ML-Agent, a plugin of Unity is used for the RL. 

 

2. Introduction 

 Autonomous vehicle is a vehicle that drives by itself without human inputs. It detects several 
environments via sensors so that it could move safely. Autonomous driving is usually classified 
with 6 levels: from level 0 (no self-driving) to level 5 (hands, eyes, and mind-off at any 
environment). The latest studies are in the 1(hands-on) or 2(hands-off) level now. The 
autonomous vehicle may lead to some better experiences, such as decreasing traffic accidents, 
road rages and vehicle crimes. 

Since 1960s, Mercedes-Benz, the car company has founded and led the studies about this 
concept. Early autonomous vehicle model just only could follow lanes of a test track which 
does not have obstacles. After 1990s, autonomous driving including obstacles has been 
developed in earnest as computation technology grows. The applications that practically 
completed are the following: (adaptive) cruise control, lane keep, lane change, highway self-
driving, and intersection self-driving. 

However, most studies in the field of autonomous vehicle have focused on autonomous 
driving. Autonomous parking has been not carried much as autonomous driving. Therefore, 

Figure 1 Autonomous driving levels 



autonomous parking will be able to be commercialized around 2027 which is slower than 
driving. Generally, actual car model is used to implement it. Major problems with this kind of 
experiment are the following: danger in crash, space constraints, and high research expenses. 
So, the main purpose of this study is to develop a software that simulates autonomous parking 
machine learning.  

Reinforcement learning is used for the research. In reinforcement learning, an agent which is 
the target object takes action under its policy, and the environment gives a reward for the action. 
As the episodes go by, the policy of the agent is optimized by maximizing the reward, and the 
action is improved by that. 

A game engine named Unity is selected to visualize the simulation. And ML-Agent (Machine 
Learning Agent) which is a plugin program is also used. To be specific, agent, environment, 
and reward are modeled in Unity Editor by editing game objects and C# scripts. The 
reinforcement learning is executed on a Linux virtual environment with python ML-Agent 
scripts. A behavior parameter is printed after the learning is completed, and the result can be 
visualized with it. 

ML-Agent supports various kind of RL algorithms. PPO algorithm is used in this research. 

There are 3 major aims of the software: 

 Safety in simulation: 

Before the experiment using the actual car model, the software simulates all the 
process and makes algorithms without any safety problem. 

 Generalized simulation:  

All possible situations are simulatable by modeling on Unity Editor. 

 Porting behavior parameter on actual cars:  

Unity ML-Agent prints its result in onnx file (Open Neural Network Exchange). Onnx 
file is a standard of machine learning framework that is written in C++, C, Python, C#, 
and Java API. It is compatible with Azure environment. If an OS such as Window or 
Azure is ported in an imbedded system of a car, onnx file can be ported as well. 

 

 

 

 

 

 

 



3. Research Process 

(1) Components 

A. Parking Lot 

 Parking lot game objects are modeled for each of 3 situations: front/back, parallel, and 
diagonal parking. Universal gravity is applied, and the floor object is set static to hold car 
objects. 

 

B. Parking Slot 

 Parking slot objects are modeled to determine whether parking is completed or not. Each of 
the paring slot objects has its own variables that are angle alignment and linear distance 
between the agent car object. The simulator monitors these variables. 
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Figure 5 Parking slot objects 



C. Agent 

 Agent object is modeled to imitate an actual car. Unity 3D ray sensors are used to implement 
LiDAR sensor of autonomous vehicle. These sensors detect the environments such as obstacles 
(parked cars and walls) and empty slots during RL episodes. And the object is made to move 
like an actual car. The object has two axles: front and rear. The front axle steers, and the rear 
axle accelerates just like a normal rear wheel drive car. 

 

D. Reward 

The simulator monitors the alignment and distance variables of every parking slot object per 
frame. If a parking slot has a certain condition of alignment and distance, the simulator decides 
that parking is succeeded and gives following reward: 

 

 

E. Parked Cars 

 Random cars are pre-parked at random slots at every 
episode start for generalized episodes. If the agent collides 
these parked cars or the walls, the simulator ends the 
episode and subtracts certain amount of reward. 
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Figure 6 Overview of agent object with ray sensors 

Figure 7 Movement elements for agent object 



 

F. Algorithm 

 The algorithm for the entire simulation program introduced so far is the following: 

 

(2) Learning 

 Reinforcement learning is done for each 3 of situations. The number of episodes and elapsed 
time are the following: 

 Front/back Parallel Diagonal 

Episodes 10,000,000 6,450,000 7,350,000 

Elapsed Time 5h 57m 35s 12h 32m 43s 22h 38m 15s 

Table 1 Learning process summary 

 

 

 

 

Figure 8 Parking lot packed with 
random cars 

Figure 9 Algorithm for the simulator 



 

(3) Result 

A. Reward Graph 

 Episode-reward graphs for each situation are the followings: 

Figure 10 Reward graph for front/back parking 

Figure 11 Reward graph for parallel parking 

Figure 12 Reward graph for diagonal parking 



 

B. Application 

 The result is exported as a PC application to show the autonomous parking. 

 

 

4. Summary 

A. Conclusion 

 This program determines an autonomous parking algorithm using reinforcement learning and 
visualizes it. Not only the 3 situations in this program, but also other situations could be learned 
with this tool. And it could be implemented in real model by importing the behavior parameters. 
In summary, these results provide safe, generalized, and flexible autonomous parking 
simulation. 

 

B. Limitation of the study, Future work 

 Due to practical reasons, this study could not unify the behavior parameters. Reinforcement 
learning has been done for each of 3 situations separately so that there 3 parameters exist. In 
further study should focus more generalized environments and episodes. 

  

Figure 13 Overview of Autopark application 


