
Autonomous Parking Simulation Using Reinforcement Learning

1. Abstract

Autonomous driving has been researched a lot in recent years and most of improvements have
been achieved. However, autonomous parking has been a practical problem so far. So, this
paper deals about a simulation program that visualizes the autonomous parking algorithm by
using reinforcement learning (RL). ML-Agent, a plugin of Unity is used for the RL.

2. Introduction

 Autonomous vehicle is a vehicle that drives by itself without human inputs. It detects several
environments via sensors so that it could move safely. Autonomous driving is usually classified
with 6 levels: from level 0 (no self-driving) to level 5 (hands, eyes, and mind-off at any
environment). The latest studies are in the 1(hands-on) or 2(hands-off) level now. The
autonomous vehicle may lead to some better experiences, such as decreasing traffic accidents,
road rages and vehicle crimes.

Since 1960s, Mercedes-Benz, the car company has founded and led the studies about this
concept. Early autonomous vehicle model just only could follow lanes of a test track which
does not have obstacles. After 1990s, autonomous driving including obstacles has been
developed in earnest as computation technology grows. The applications that practically
completed are the following: (adaptive) cruise control, lane keep, lane change, highway self-
driving, and intersection self-driving.

However, most studies in the field of autonomous vehicle have focused on autonomous
driving. Autonomous parking has been not carried much as autonomous driving. Therefore,

Figure 1 Autonomous driving levels

autonomous parking will be able to be commercialized around 2027 which is slower than
driving. Generally, actual car model is used to implement it. Major problems with this kind of
experiment are the following: danger in crash, space constraints, and high research expenses.
So, the main purpose of this study is to develop a software that simulates autonomous parking
machine learning.

Reinforcement learning is used for the research. In reinforcement learning, an agent which is
the target object takes action under its policy, and the environment gives a reward for the action.
As the episodes go by, the policy of the agent is optimized by maximizing the reward, and the
action is improved by that.

A game engine named Unity is selected to visualize the simulation. And ML-Agent (Machine
Learning Agent) which is a plugin program is also used. To be specific, agent, environment,
and reward are modeled in Unity Editor by editing game objects and C# scripts. The
reinforcement learning is executed on a Linux virtual environment with python ML-Agent
scripts. A behavior parameter is printed after the learning is completed, and the result can be
visualized with it.

ML-Agent supports various kind of RL algorithms. PPO algorithm is used in this research.

There are 3 major aims of the software:

 Safety in simulation:

Before the experiment using the actual car model, the software simulates all the
process and makes algorithms without any safety problem.

 Generalized simulation:

All possible situations are simulatable by modeling on Unity Editor.

 Porting behavior parameter on actual cars:

Unity ML-Agent prints its result in onnx file (Open Neural Network Exchange). Onnx
file is a standard of machine learning framework that is written in C++, C, Python, C#,
and Java API. It is compatible with Azure environment. If an OS such as Window or
Azure is ported in an imbedded system of a car, onnx file can be ported as well.

3. Research Process

(1) Components

A. Parking Lot

 Parking lot game objects are modeled for each of 3 situations: front/back, parallel, and
diagonal parking. Universal gravity is applied, and the floor object is set static to hold car
objects.

B. Parking Slot

 Parking slot objects are modeled to determine whether parking is completed or not. Each of
the paring slot objects has its own variables that are angle alignment and linear distance
between the agent car object. The simulator monitors these variables.

Figure 2 Front/back parking Figure 3 Parallel parking Figure 4 Diagonal parking

Figure 5 Parking slot objects

C. Agent

 Agent object is modeled to imitate an actual car. Unity 3D ray sensors are used to implement
LiDAR sensor of autonomous vehicle. These sensors detect the environments such as obstacles
(parked cars and walls) and empty slots during RL episodes. And the object is made to move
like an actual car. The object has two axles: front and rear. The front axle steers, and the rear
axle accelerates just like a normal rear wheel drive car.

D. Reward

The simulator monitors the alignment and distance variables of every parking slot object per
frame. If a parking slot has a certain condition of alignment and distance, the simulator decides
that parking is succeeded and gives following reward:

E. Parked Cars

 Random cars are pre-parked at random slots at every
episode start for generalized episodes. If the agent collides
these parked cars or the walls, the simulator ends the
episode and subtracts certain amount of reward.

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
𝐷𝐷𝐴𝐴𝐷𝐷𝐴𝐴𝐷𝐷𝐴𝐴𝐷𝐷𝐴𝐴 × 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴

 =
𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
�⎯⎯⎯⎯⎯⎯⎯� ∙

𝑟𝑟𝑝𝑝𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝
�⎯⎯⎯�

𝐷𝐷𝐴𝐴𝐷𝐷𝐴𝐴𝐷𝐷𝐴𝐴𝐷𝐷𝐴𝐴 × 𝐸𝐸𝐸𝐸𝐴𝐴𝐷𝐷𝐸𝐸𝐸𝐸𝐴𝐴𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴

Figure 6 Overview of agent object with ray sensors

Figure 7 Movement elements for agent object

F. Algorithm

 The algorithm for the entire simulation program introduced so far is the following:

(2) Learning

 Reinforcement learning is done for each 3 of situations. The number of episodes and elapsed
time are the following:

 Front/back Parallel Diagonal

Episodes 10,000,000 6,450,000 7,350,000

Elapsed Time 5h 57m 35s 12h 32m 43s 22h 38m 15s

Table 1 Learning process summary

Figure 8 Parking lot packed with
random cars

Figure 9 Algorithm for the simulator

(3) Result

A. Reward Graph

 Episode-reward graphs for each situation are the followings:

Figure 10 Reward graph for front/back parking

Figure 11 Reward graph for parallel parking

Figure 12 Reward graph for diagonal parking

B. Application

 The result is exported as a PC application to show the autonomous parking.

4. Summary

A. Conclusion

 This program determines an autonomous parking algorithm using reinforcement learning and
visualizes it. Not only the 3 situations in this program, but also other situations could be learned
with this tool. And it could be implemented in real model by importing the behavior parameters.
In summary, these results provide safe, generalized, and flexible autonomous parking
simulation.

B. Limitation of the study, Future work

 Due to practical reasons, this study could not unify the behavior parameters. Reinforcement
learning has been done for each of 3 situations separately so that there 3 parameters exist. In
further study should focus more generalized environments and episodes.

Figure 13 Overview of Autopark application

