Ultrasonic Sensor-Based Autonomous

Haesung Oh
Abstract

Currently, drones are commercialized and used in various fields. This paper presents a drone that
explores dangerous disaster sites for humans to enter directly. It added autonomous flight to avoid
obstacles using ultrasonic sensors for situations where direct control is difficult, or radio communication
is impossible. When an obstacle appears within a range in the ultrasonic sensor, it autonomously drives
with an algorithm that moves to the left or right. In addition, this paper suggests a returning algorithm
for easy drone withdrawal. This function works when the drone cannot drive during autonomous flight
or exceeds half of the maximum driving distance.

L. Introduction
1. Necessity and Research Purpose

Small drones can move flexibly in any space because they can adjust their altitude as well as front,
rear, left, and right. In a disaster, the initial reaction is insufficient due to various factors. Therefore, the
goal was to grasp the disaster site with a drone. Since indiscriminate input of rescue teams without the
absence of identification of disaster sites can cause secondary damage, it aims to be an autonomous
drone that enables safe and fast topographic identification without relying on human control.

2. Features and Advantages

In the event of a collapse, there are numerous obstacles, so it can be hard to control directly. In addition,
assuming a situation in which communication is difficult due to radio wave obstruction materials (rebar,
concrete), the autonomous driving function was added to automatically identify the terrain and return
to the way it came to facilitate withdrawal.

1I1. Research contents
1. Hardware

This study uses commercially available Arduino-based drone kits to ease the addition and coding of
ultrasonic sensors. The kit uses the Arduino Pro Micro board as the motherboard. Figure 1 shows the
specifications of this motherboard. Also, Figure 2 shows the pins used by the Arduino Pro Micro in this
kit.

Ultrasonic sensors with minimized size and weight are in favor. Therefore, this study uses the SRFO1
model (Figure 3). This sensor is the most tin ultrasonic sensor. It also has the advantage of parallel
connecting on a single digital pin by assigning different address values to each sensor (Figure 4).

All four SRF01 sensors connect parallelly to the digital pinl5 that remains empty in the completed
drone kit and is attached in the front-rear, left-right, and left-right directions (Figure 5). In conclusion,
the structure shown in Figure 6 controls the hardware system.

ol &7 g2 ®o~3 pin) — Ll P~ raw 24
(A E: UXE =2 P 21(A3), 20(A2), 19(A1), 18(A0)) ;§ —3 O_RX GND | [
' | s RST 5+ |
-) i GND vee O +5v
svsE | CIXIE 21 &2 HI(10,14-16'4 pin) SDA 2_SDA 21_A3 B VBAT
2| Al(Reset) \ - (2= 0l &] 2121 A10(10) seLl 3_scL 20_A2 |
HXI(Ground) \ | ! D5 G 1|89__.:D‘ b
| B
RAW XXX LEE gg T g—” 1154—_?‘%5 ::3:
Hepw - y widodeiiy, * —{a_as 16_MOSI ==
D9 > —————£19 a9 10_A10 < b0
Micro USB u
peT ARDUINO_PROMICRO
XXTX XX XL X oLFol. T2 OlojAZ0|M ASSHE B AY
‘ |
serimlow(rx) /| e ozet w9t pin ARSI @ LD B2 AHREA A8
Serial In(Rx / (Z2: 01 &7 221 A6(d), A7(6), e = —
erial In(Rx) AB(8), AS9)) obFol. H Mz ol 7l
& A (Ground) bo RX AElggd, SMNoED HE
D1 X A2|gEY, ENDED o
. . . A | ™
figure 1 Arduino Pro Micro Pin map o2 DA ZCS4 VR0 Aa
D2 sCL I2CE A, MPUG0SOHI M2t Gz
D5 2% ol 2§
D6 2% 2 9F
D7 Fiolate 9E
D9 222 offf 25
D10 oaz o gf
A3 HiE2| 43
Figure 2 Arduino Pro Micro Pin usage
o]0 Rx 5[]
" o] 1TH 4o
| a2 analog in 3 | o
a3 2.
SRFO1 1 3 11
: — 2|5 0]
g B —
N “ S i Ataddress 1 ME Digital pins _
. . — g
Figure 3 SRF01 Ultrasonic Sensor annl
- []8 GND
a9 v
SRFOI } o[10 33
o 1 reset
— of12
13
At address 2 : GND
o | aref
ush
Arduino

Figure 4 Parallel Connecting of SRF01

;i i e Arduino Pro Micro
. 12c
Figure 5 Assembled Drone 1 IRQLL, PITCH, YAW
Wl Drone Angle
GY-521 (HOI= M) Drone Throttle
P ..y Joystick PID Controller
Position MultiWii
HIL10 (552 BE)
4 PWM e
Z
CEEETT SRFOT ZSTEA

820 Motor X4

Figure 6 Overview of Hardware Control

2. Software
A. SRF01 Ultrasonic Sensor

i. Serial Communications

The SRFO01 sensor shall use serial communication to communicate with the Arduino board. However,
the Arduino Pro Micro board has only two serial communication pins and even uses them to
communicate with Bluetooth communication modules, making it difficult to use the serial
communication pins. Therefore, this study uses software serial communication to enable digital pins to

virtual serial communication pins. The following figure shows the basic setting.

finclude ﬁSoftwareSerial.hﬂ

SoftwareSerial srf0l = ScoftwareSerial (SRF_TXRX, SRF _TXRX) ;

woid setup() {
srf0l.begin(9600) ;
Serial .begin (9600) ;
srf0l.listen();

delay (200) ;

}
Figure 7 Software Serial Communications

This work sets the SRF TXRX wvalue to 15 and uses the digital pinl5 as the software serial

communication pin.

ii. Input Command

SRFO01 sensors use digital pins on Arduino. So the digital Write() function on the Arduino code is used.
For example, the figure below is a function of inputting a command line to the SRF01 sensor.

void SRF01 Cmd(byte Address, byte cmd) {
pinMode (SRF_TXRX, OUTPUT);
11 i lWrite (SRE‘_TXRX, LOW) ;

lWrite (SRF_TXRX, HIGH);

pinHQde(SRF_TXRX, INPUT) ;
int awvallbledJunk = srfll.available();

for (int x = 0; x < availbleJunk; x++) byvte junk = srfll.read();

}
Figure 8 SRF01 Sensor Command Input Function

The digital pin receives commands in the order of LOW and HIGH. Then it gets the address value of
the sensor and the command line through a predefined serial. After that, it goes through a process of

removing noise.

iii. Address Assignment

The SRF01 sensor can store numbers from 1 to 16 in the built-in board and use them as address values.
This feature allows the parallel connecting of multiple sensors to one digital pin to use them
simultaneously. In addition, the system can distinguish different sensors by receiving an address value
from the above command function. This address value is set to 1 as the factory default but can be
modified with the following procedure:

vold set srf address(byte old add, byte new add) { Write (ADD TXRX, LOW);
- L1l LT . r AN r

pinMode (ADD TXRX, OUTEUT);
B 2);
Lite (ADD TXRX, LOW); digitalWrite (ADD_TXRX, HIGH);
- srf0l add change.write(old add);
digitalWrite (ADD TXRX, HIGH); srf0l _add change.write (0xAS5);

srt0l1_add_change.

srf0l_add change.write (0xA0);

lWrite (ADD_TXRX, LOW);

lWrite (ADD TXRX, LOW);)
digitalWrite (ADD TXRX, HIGH);

irite (ADD_TXRX, HIGH); srfo 1_add_change .Write (old_add) ;
srf0l_add change.writ srf0l add change.write(new add); |

digita

srf0l_add change.

Figure 9 SRF01 Sensor Address Assignment Function

Entering 0xA0, 0xAA, 0xA5(new address value) as a command line in order sets the board to the new
address value. In this study, four sensors were placed and used as address values of 1 (front), 2 (right),
3 (rear), and 4 (left), respectively.

iv. Distance Measurement

To measure the distance in cm, enter the 0x54 command, cut the bits output from the sensor's board
into 8 units, and read them twice. And the algorithm can determine the distance by combining the two
bytes.

SRFO1_Cmd (1, GETRANGE);
while ({(srfll.available(}) < 2});

F

hByte = srfl0l.r=sad();

1Byte = srfl0l.re=ad();

ranges = ({(hByte << B) + 1lByte);
Serial.print ("Rangel = ");

Serial.println{range, DEC);

Figure 10 SRFO1 Distance Measurement Function

B. Directional Control Algorithm

The user can directly control the drone kit used in this study with a dedicated smartphone application.
This application has two joysticks. The left joystick manipulates the drone's altitude and rotation of the
YAW axis, and the right joystick manipulates the forward, backward, left, and right movements in the
XY plane.

EMERGENCY

dladui. www. daduino.cokr
Figure 11 Drone Control Application

An array called rcData within the drone's code stores this joystick's movement. For example, rcData[0]
and rcData[1] reserve the x and y coordinates of the left joystick, and rcData[2] and rcData[3] do the x
and y coordinates of the right joystick, respectively. In this study, the drone was manipulated by
arbitrarily changing the rcData array to ignore the application joystick and force it to change direction.

C. Autonomous Flight Algorithm

i Priority and Flow Chart of Autonomous Flight Algorithm

Figure 11 shows the flow chart of autonomous flight algorithm.

Start

h 4

Go Straight

Obstacle

Forward TS

Obstacle
Right side

YES

NO NO
v ¥
Parallel movement Parallel movement
to the right to the right

Max distance / 2

YES

NO

L.

NO Dead End YES —pf

Return procedure

k.

Withdraw

N i

Figure 12 Autonomous Flight Algorithm Flow Chart

In this algorithm, the priorities are as follows:

1.
2.

Return after driving half of the maximum mileage.

Go straight if there are no obstacles toward.

If there is no obstacle on the right, move parallel to the right.

Parallel movement to the left.

Return when the drone encounters a dead end.

ii. Returning Algorithm

The checkBattery() function in the drone code returns the current battery remaining in % units.
Therefore, with the above algorithm, if the checkBattery() value becomes 50 at any time during the
autonomous tour, the algorithm immediately returns to the way it came.

Since it is necessary to reverse the way it came, a stack structure stores the values of the drone's
direction as a rcData array and the travel distance using the gyro sensor. Then when returning, it popped
to return the path in reverse order.

rcData[4]| 1.x |1y |2x |2y

distance | d

stack 1 2 3 4 5

_

push(int n)
pop()
empty()

Figure 13 Stack Structure Used for Return Algorithm

III. Results

1. Experimental results

— Obstacle

Route

Returning Route

Figure 14 Obstacles and Routes in the Experiment

Experiments showed that the drone followed the intended algorithm to avoid obstacles. However, it
was unstable along the YAW axis, so when returning to the reverse driving, it could not return to the
starting point and hit the wall while driving.

2. Conclusion

This study devises a drone to help the rescue team carry out operations by quickly and accurately
checking the internal situation. Putting the drone into a place where people enter from a disaster/disaster
site, such as a collapse of a structure, should help this. The drone uses ultrasonic sensors to identify
obstacles in the local hardware rather than GPS, which leads to independent self-driving. Ultimately,
we eliminate cases where we miss the golden time when we cannot grasp the initial stage in disaster
situations. In a narrow space where humans are challenging to control, or communication is difficult,
an algorithm is also implemented to drive autonomously and return the path to the starting point for the
safe withdrawal of drones. This autonomous driving algorithm might be helpful in other fields.

IV. Future research and complementary points

In terms of hardware, the maximum motor output of the drone kit was somewhat small. In addition,
since the experiment was conducted in a narrow room to prove the algorithm's precision, the throttle of
the motors was reduced. So, I could confirm that it was flying at a relatively low height. Therefore, in
future studies, it is necessary to find a way to set the throttle high enough to increase the altitude but
keep the parallel movement speed.

In addition, the three axes of ROLL, PITCH, and YAW were all unstable. As a result, maintaining the
same altitude was even a difficulty. Therefore, in the following study, stable stabilization that endures
the same height and does not move parallel should be implemented first.

In this study, camera attachment was omitted due to hardware limitations, but it can be used to identify
actual terrain by attaching cameras and SD cards. Furthermore, rather than grasping the topography
with a two-dimensional image as a camera, the LIDAR sensor can be used to identify the surrounding
environment in three dimensions in real time, monitor it, and use it for autonomous driving. In this way,
terrain monitoring and autonomous driving can be performed simultaneously.

In terms of software, not only parallel movement on a two-dimensional plane but also z-direction
elevation control should be added to the autonomous driving algorithm to aim for more flexible
autonomous driving. In addition, in this study, the GPS function was excluded because the drone is for
where communication was impossible, but it is expected to be used for broader coverage.

Reference

V.

If

e

<Deep Reinforcement Learning 7|8t2| Xt-ZH|Z

,2018)

pail
OH
41

Hel

()

<

x|, 2020)

ok
Hl

o1

| St
St

=

<l

E

. MO ZEA|

FE 2013)

7|

| st&=LH3!, 2020)

Ot&F0|L 7|Ht EE F|E LC}HFO|k : hitp:/daduino.co.kr/

SRF01 MA GO|HA|E:

.pdf

SKU_SEN0004_SRF01 Datasheet

https://wiki.dfrobot.com/SRF01 Ultrasonic sensor

http://daduino.co.kr/
https://wiki.dfrobot.com/SRF01_Ultrasonic_sensor__SKU_SEN0004_

